The Evaluation of Radio-sensitivity Effect of Hydroxyapatite Nanopartical on MCF-7 and Fibroblast Cell Line

Authors

  • Fatemeh Elmi Department of Marine Chemistry, Faculty of Marine & Oceanic Science, University of Mazandaran, Babolsar, Iran
  • Ladan Barari Department of Marine Chemistry, Faculty of Marine & Oceanic Science, University of Mazandaran, Babolsar, Iran
  • Maryam Mitra Elmi Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
  • Mitra Soleimani Student Research Commitee, Department of Medical physics, Radiobiology and Protection, Babol University of Medical Sciences, Babol
Abstract:

Introduction: Hydroxyapatite nanoparticles inhibit the growth of various cancer cells. The inhibitory effect of these nanoparticles on breast cancer cells of mcf7 has also been reported. However, no studies have been done on the effect of the hydroxyapatite nanoparticles on the radiation sensitivities of the MCF7 cell Line. Our goal in this study is to investigate the effect of cytotoxicity and radiation sensitization of hydroxyapatite nanoparticles on mcf7 and healthy fibroblast cells. In the concentration-dependent process, these nanoparticles greatly inhibit the growth of MCF7 cells compared to healthy fibroblast cells. the radio sensitivity effect of these nanoparticle was also found to be very high in MCF7 cells. Breast cancer is the most common cancer in women. the most common treatment are chemotherapy and radiotherapy after surgery that both of these methods are associated with many side effects. also, many cancer cells show resistance to these two methods. So, researchers are looking for materials that are used to improve cancer with fewer side effects. According to recent advances in the field of nanotechnology, application of nanoparticles in medicine, in particular, the treatment of incurable diseases including cancer treatment, are considered. One of these nanoparticles is hydroxyapatite with the chemical formula, Ca10 (PO4) 6 (OH) 2. Hydroxyapatite is similar to minerals in bones and hard tissues, and has great compatibility with body (Harirchi, Kolahdoozan, et al., 2011). So, it could be used in the different biological and biomedical applications. Materials and Methods: Materials used in this study include: MCF7 Cell Line، Fibroblast Cell، RPMI 1640، DMEM-High glucose، FBS، Pen/Strep، PBS، MTT، DMSO، Giemsa Stain، Etydiombrumid/Acrialorange، Methanol، Trypsin- EDTA، Isopropranol. In this study, the effect of cytotoxicity of hydroxyapatite nanoparticles on mcf7 and fibroblast cells was investigated using the MTT assay at concentrations (0، 12.5، 25،50، 100، 200 and 400µg/ml) of nanoparticles. The radiosensitivity effect of these nanoparticles on the cells was studied with the three methods: MTT assay، clonization and apoptosis assays Results: The study of cytotoxic effects of hydroxyapatite nanoparticles on MCF7 and fibroblast cells by MTT showed that nanoparticles reduce the cell survival in the dose- dependent process and the cytotoxic effects of these nanoparticles are not time-depende. Investigating the effect of hydroxyapatite nanoparticle radiation sensitization on nanoparticles shows that these nanoparticles increase the radiological sensitivity of cancerous and healthy cells, while the amount of this sensitivity in cancer cells is more than healthy cells. Another finding is that hydroxyapatite nanoparticles cause apoptosis in cells. Conclusion: The present study shows the potential of hydroxyapatite nanoparticles as a radiation sensitizing agent in the treatment of breast cancer. Further studies are needed to suggest these nanoparticles as a therapeutic agent.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

the effect of functional/notional approach on the proficiency level of efl learners and its evaluation through functional test

in fact, this study focused on the following questions: 1. is there any difference between the effect of functional/notional approach and the structural approaches to language teaching on the proficiency test of efl learners? 2. can a rather innovative language test referred to as "functional test" ge devised so so to measure the proficiency test of efl learners, and thus be as much reliable an...

15 صفحه اول

Evaluation of the Bystander effect caused ultrasound waves on the MCF-7 cell line

Introduction: Non-target radiation effects are damages and effects that occur without the need for direct radiation exposure in cells. Bystander signals cause non-targeted irradiation effect that has been defined as radiation responses in which non-irradiated cells exhibit irradiated effects as a result of signals from adjacent irradiated cells. In this study, the bystander ef...

full text

the evaluation of language related engagment and task related engagment with the purpose of investigating the effect of metatalk and task typology

abstract while task-based instruction is considered as the most effective way to learn a language in the related literature, it is oversimplified on various grounds. different variables may affect how students are engaged with not only the language but also with the task itself. the present study was conducted to investigate language and task related engagement on the basis of the task typolog...

15 صفحه اول

the effect of task complexity on lexical complexity and grammatical accuracy of efl learners’ argumentative writing

بر اساس فرضیه شناخت رابینسون (2001 و 2003 و 2005) و مدل ظرفیت توجه محدود اسکهان (1998)، این تحقیق تاثیر پیچیدگی تکلیف را بر پیچیدگی واژگان و صحت گرامری نوشتار مباحثه ای 60 نفر از دانشجویان زبان انگلیسی بررسی کرد. میزان پیچیدگی تکلیف از طریق فاکتورهای پراکندگی-منابع تعیین شد. همه ی شرکت کنندگان به صورت نیمه تصادفی به یکی از سه گروه: (1) گروه موضوع، (2) گروه موضوع + اندیشه و (3) گروه موضوع + اندی...

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 15  issue Special Issue-12th. Iranian Congress of Medical Physics

pages  113- 113

publication date 2018-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023